
Zero performance overhead
OpenZFS dedup

Matt Ahrens

Dedup performance sucks...

● Assume DDT fits in RAM (ARC cache)
● One logical write

○ write (3 copies of) one random DDT block + (maybe) write data
○ ~4x write inflation (ignoring indirect blocks)

● One logical free
○ write (3 copies of) one random DDT block

… because on-disk hashtables suck

Dedup performance sucks...
● What if DDT doesn’t fit in RAM?
● One logical write

○ Read one random DDT blocks
○ write (3 copies of) one random DDT block + (maybe) write data
○ ~5x i/o inflation (ignoring indirect blocks)

● One logical free
○ Read one random DDT blocks
○ write (3 copies of) one random DDT block

… because reading from disk sucks

Dedup doesn’t
have to suck!

Limit DDT to fit in RAM

● When too big, evict refcount=1 entries
● Gives new data a chance to dedup
● Eviction policy: random (for now)
● Teach zio_free() that it’s OK if we can’t find entry in DDT

○ (it was evicted)
● Note: still possible to fill RAM with refcount>1 entries

○ Then can’t add new entries to DDT

DDT on-disk: hashtable vs log

Checksum DVA (location on disk) Refcount

0x12345678 vdev=1 offset=765382 1

0x98765432 vdev=0 offset=827358 5

0x12345678 vdev=1 offset=765382 0

0x98765432 vdev=0 offset=827358 6

next Next entry goes here next

DDT on-disk: hashtable vs log

● 1024x logical writes or frees -> write one DDT log block
● Open pool -> read log, reconstruct in-memory DDT
● When log is ~75% obsolete entries, write in-memory DDT to

new log

Theoretical performance gains

● One logical write
○ Write 1/1024th DDT log block + (maybe) write data
○ Old: 4-5 i/os; new: 1.003 i/os

● One logical free
○ Write 1/1024th DDT log block
○ Old: 1-3 i/os; new: 0.003 i/os

Make dedup perform well by default!

● Proof of concept implemented
○ https://github.com/ahrens/illumos/tree/dedup

● Delphix doesn’t use dedup
○ (snapshots + clones is much more efficient way to share

blocks, when possible)
● Who wants to make this real?

https://github.com/ahrens/illumos/tree/dedup

TODO

● Property to control behavior
○ dedup_memory=auto | <size> | <percent>% | legacy

○ Auto: use 25% of RAM (and DDT-log)
○ Legacy: use DDT-ZAP

TODO

● Background DDT condensing
○ Currently condensed in one TXG

TODO

● What if not enough RAM to hold DDT?
○ Check this when loading DDT at pool open
○ New blocks won’t be dedup’d
○ When free dedup block, we can still log it

■ Keeps on-disk format consistent for when we add RAM

TODO

● Better in-memory representation
○ Use hashtable (currently AVL tree)
○ Compact entry (currently 192 bytes, could be ~64B)

TODO

● Better on-disk representation
○ Compact entry (currently 168 bytes, could be ~64B)
○ Need “decrement” type entry (don’t know absolute

refcount when insufficient RAM to load table)

TODO: optional

● Observability: how much has been evicted?
● Investigate better eviction policy (LRU?)
● Allow “in-memory” hashtable to span RAM + 3D Xpoint /

NVMe / SSD

TODO

● Better on-disk representation
○ Compact entry (currently 168 bytes, could be ~64B)
○ Need “decrement” type entry (don’t know absolute

refcount when insufficient RAM to load table)

Dedup doesn’t
have to suck!

Let’s make it better

